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Abstract 

Theoretical expressions are derived for (y"), n = 1 to 
8, ( ( z -  1)"), n =2 ,3  and 4, ( (z - (z) )" ) ,  n = 2 , 3  and4,  
([z-1[), ([z-113) and <lz-<z>13>, where y is the nor- 
malized structure-factor magnitude and z ( = I / ( I ) )  
is the normalized intensity, valid for the centric and 
acentric Wilson distributions truncated such that 
a ~/2<- y<-b ~/2. The final results are given in the form 
of a convenient table of expressions. The tests of the 
theoretical results using the observed intensity data 
of a few crystals show that the agreement between 
the experimental and the corresponding theoretical 
values obtained from the present theoretical results 
is better than the agreement with the values obtained 
from M U L T A N 8 0  in centrosymmetric structures, 
while the present theory and M U L T A N 8 0  are found 
to yield results that are equally good for non- 
centrosymmetric structures. 

1. Introduction 

An essential and useful step in crystal-structure analy- 
sis is the determination of the space-group symmetry 
of the crystal. The acentric and centric Wilson distri- 
butions$ (Wilson, 1949) play a central role in this 
regard. The utility of these distributions lies in their 
applicability to crystals of all space groups provided 
there are a sufficiently large number of similar atoms 
in the asymmetric unit at random positions. The 
intensity data of a majority of organic crystal struc- 
tures obey reasonably well the acentric or the centric 
Wilson distribution if the crystal is respectively non- 
centrosymmetric or centrosymmetric. In view of this, 
the standard structure-solution programs (e.g. 
M U L T A N 8 0 ;  Main, Fiske, Hull, Lessinger, Ger- 
main, Declercq & Woolfson, 1980) list the experi- 
mental values of the statistical quantities (y), (y2), 
(y3), (y4), (yS), (y6), (]y2 11), ( (y2_ 1):), ( (y2_ 1)3 ) 

* To whom correspondence should be addressed. 
t Contribution No. 796. 
$ These are derived based on the central-limit theorem and are 

not valid in the presence of extreme heterogeneity and pseudosym- 
metry. These extreme situations are beyond the scope of the present 
paper. The approach of Shmueli and coworkers may be used to 
derive the exact distributions for such situations (see, for example, 
Weiss, Shmueli, Kiefer & Wilson, 1985; Shmueli, Weiss & Kiefer, 
1985). 
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and ([y2_ 113) (where y is the normalized structure- 
factor magnitude) and their corresponding theoretical 
values for the acentric and centric Wilson distribu- 
tions for comparison. These theoretical values pertain 
to the untruncated Wilson distributions (i.e. 0<_y< 
oo). However, the data of actual crystals are always 
truncated at the lower end of the intensity scale owing 
to 'unobserved reflections'. Furthermore, in connec- 
tion with the higher-moment tests for space-group 
determination, Foster & Hargreaves (1963) noted that 
the experimental values of the higher moments of 
intensities are generally larger than the corresponding 
theoretically expected values. Similar features were 
also observed in the experimental values of 
(y4), (y.S), (y6) and (ly 2 -  113) in the M U L T A N 8 0  out- 
puts (Main et al., 1980) of a few structures that we 
determined. One reason for this could be overestima- 
tion of the y values of a few of the very strong 
reflections. This implies that better agreement 
between the observed and the corresponding theoreti- 
cal values of the various statistical quantities could 
be obtained by computing the experimental values of 
the moments by excluding a few largest y values:l: 
and comparing the experimental values thus obtained 
with their corresponding theoretical values computed 
for the appropriately truncated Wilson distributions. 
In this paper we shall therefore derive the theoreti- 
cal expressions for (y), (y2), (y3), (y4), (yS), (y6), 
( y2_ l[ L ( (y2_ 1)2), ( (y2_ 1)3), ([y2_ 1[3) applicable 
to the untruncated data a ~/2 <- y <- b ~/2. 

Following the usual notation used in the literature 
on statistical tests for centrosymmetry we shall use y 
in the place of the normalized structure-factor magni- 
tude E used in direct-methods literature. The quantity 
y is related to the normalized intensity z and the 
intensity I as 

y2= z =  I / ( I ) ,  (1) 

where (I) is the local average value of I for reflections 
in a narrow region of(sin O)/h. From (1), the expecta- 
tion value of any function g(y )  of y may be written 
as 

(g(y)) = (g(z ~/2)). (2) 

:~ These could be identified and excluded by the statistical pro- 
cedure suggested in § 6. 
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From (2) it i~ clear that the theoretical expressions 
for (g(y))  may be derived by makin 8 use of the p.d.f. 
(probability density function) of z. Since it is more 
convenient to use z instead of y, we shall generally 
use the variable z in the theoretical derivations. 
For similar reasons we shall use the quantities 
( ( z -  1)2), ( ] z -  1] 3) etc. instead of the equivalent quan- 

t;t;o~ [( V 2-  1 )2}. (,1V 2 -- 113) etc. 
Ahhou~;h (z} ~ 1 for bo th  acentr;.e and  eentr ie  Wil- 

son distributions (0_< z < ~) ,  (z), (= MI, say) differs 
from unity for the truncated Wilson distributions (i.e. 
a <- z <- b) (see § 2 for notation). Hence quantities 
such as ( ( z - 1 ) " )  and ( ( z -M1)" )  will in general be 
different. Therefore, we shall also derive theoretical 
expressions for (Iz-M~["), n = 1,2, 3, in this paper. 
Since Srinivasan & Subramanian (1964) have shown 
that the theoretical values of (y~) differ markedly for 
the centrosymmetric and noncentrosymmetric cases, 
we shall also derive theoretical expressions for (y7), 
and (y8), and in addition ((z-1)4) ,  and ( ( z -  Ml)4)t. 
The theoretical results reported in this paper were 
tested for a few crystal structures and the details of 
the results obtained are also presented here. 

~(L,~)--  

~,(½, x 2) = 

~,(~, x) = 

~,(~, x) = 

y(2, x) = 1 - ( x  + 1) exp ( - x )  (4b) 

y(3, x ) =  2 -  (xZ+2x+2)  exp ( - x )  (4c) 

3/(4, x) = 6 - ( x 3 + 3 x e + 6 x + 6 )  exp ( - x )  (4d) 

y(5, x) = 24-(X4+4X3+ 12x2 + 24x +24) exp ( - x )  

(4e) 

,rrl/2 e r f ( x  !/2) (5a) 

7r '/2 erf (x) (5b) 

(rr'/2/2) er f (x  1/2) - x  '/2 exp ( - x )  (5c) 

(3 rrl/2/4) err (x I/2) - (xl/22) 

x (2x+3)  exp ( - x )  (5d) 

y(~, x) = ( 15 ~r'/2/8) erf (x ~/2) - ( x ' / 2 /4 )  

× (4x2+ 10x+ 15) exp ( - x )  (5e) 

y(9, x) = (105rr'/2/16) erf(x  '/2) 

- (x l /Z/8)(8x  3 + 28x 2 + 70x + 105) 

×exp ( -x ) .  (5f) 

2. Notation, nomenclature and some 
preliminary results 

We shall denote the intervals 0 <- z < o0 and a <- z <- b 
by the symbols Z and Z,, respectively, and the inter- 
vals 0 <- y < oo and a 1/2 <__ y < b~/2 by Y and Y,, respec- 
tively. We shall use t as a subscript to quantities that 
pertain to truncated distributions. For example, P,(z) 
is the p.d.f, of z for the truncated distribution defined 
in the interval Z,, while P(z) is the p.d.f, of z defined 
in the interval Z. It is convenient to use the abbrevi- 
ations AWD, CWD, TAWD and TCWD for the acen- 
tric Wilson distribution, the centric Wilson distribu- 
tion, the truncated acentric Wilson distribution and 
the truncated centric Wilson distribution, respec- 
tively. We shall refer to the distributions TAWD and 
TCWD together by the common symbol TWD 
(=truncated Wilson distributions) and the distribu- 
tions AWD and CWD together by the common sym- 
bol WD (=Wilson distributions). We shall also use 
the symbols C and NC to stand for the centrosym- 
metric and noncentrosymmetric cases, respectively. 
It is convenient to define A, and A2 by 

AI = l / [ e x p ( - a ) - e x p ( - b ) ] ,  

A2 = 1/[erf (b'/2/2 '/2) - e r f  (al/2/21/2)]. 
(3) 

The following results involving incomplete 3' func- 
tions are needed in the theoretical simplifications 
and these can be derived easily from the recurrence 
relations of the y function (Abramowitz & Stegun, 
1965): 

y(1, x) = 1 - e x p  ( - x )  (4a) 

2.1. Symbol for change in function value and its 
algebraic properties 

We shall use the notation [f(X)]p q to stand for the 
change in the value of the function f ( x )  as x changes 
its value from p to q, 

[ f (x)  ]q = f (q )  - f ( p ) .  (6a) 

We shall refer to the symbol [ f (x)]  b,2 as the symbol 
for the change in the function value (SCFV hereafter). 
The following algebraic properties of the SCFV are 
extensively used in the theoretical simplifications: 

[k,]] =0, (6b) 

a = (6c) [f(x)]b --[f(x)] b a ,  

[f(x)]~ + [ f ( x ) ] ~ = [ f ( x ) ] ~ ,  (6d) 

[k, + k2 f (x )]]= k2[f(x)]~, (6e) 

[k , f ( x )+k2g (x ) ]~=k l [ f ( x ) ]~+k2[g (x ) ]  b,,, (6f) 

k,[ k2 + kaf(x)]~ + k,[ k5 + k6g(x)]~ 

=[k ,k3 f (x )+k4k6g(x)]  b,,, (6g) 

where the ki are constants. Using the notation for the 
SCFV, we can rewrite (3) as 

31=  1 / [ - exp  ( -x ) ]~ ,  A2 = 1/[erf (x~,/2/2'/2)] b o "  

In § 3 we shall derive some general theoretical 
results that are needed to derive the truncated Wilson 
distributions and the moments of z and Iz - c I (where 
c is a constant) for these distributions. These results 
are used to obtain results pertaining to the TAWD 
and the TCWD in §§ 4 and 5, respectively. Tests of 
the theoretical results for a few cases are given in § 6. 
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3. Derivation of  theoretical results for any 
truncated distribution 

3.1. Theoretical formulae for the p.d.f 

Let P(z) and N(z)  be respectively the p.d.f, and 
cumulative function (c.f. hereafter) of a random vari- 
able z* defined in the interval 0 - < z < ~ .  Let P,(z) 
and N,(z) be respectively the p.d.f, and c.f. o f z  when 
the data is truncated such that a <-z-< b. The p.d.f. 
of  z for the truncated distribution can be obtained 
from that of the corresponding untruncated distribu- 
tion by using the result (Eadie, Drijard, James, Roos 
& Saadoulet, 1972) 

P , ( z ) = P ( z ) / [ N ( b ) - N ( a ) ] ,  z~Zt .  (7) 

The cumulative function of z for the truncated distri- 
bution can be obtained from that of the untruncated 
distribution as 

N t ( z ) = [ N ( z ) - N ( a ) ] / [ N ( b ) - N ( a ) ] ,  z6Z, .  
(8) 

3.2. Theoretical formula for ( ( z -  c)") 

The nth moment of z about z =  c (where c is a 
constant) for the truncated distribution is given by 

= k~__0 ( ~ )  (-- C)"- k(Zk),, (9) 

where we have used the binomial theorem for an 
integral exponent to expand ( z - c ) "  and also the 
linearity property of the expectation value. Let Mk 
stand for the kth moment of z about the origin for 
the truncated distribution, 

h 

Mk = (zk), = ~ zk£(z)  dz. (10) 
a 

From (10) we can rewrite (9) as 

3.3. Theoretical formula for (Iz - c]" ) 

We shall consider the following two cases: (i) c = 1 
and (ii) c = M~. When n is even (=2m, say), we have 

([z - cl2"), : ((z - c) 2"),, (12) 

which may be evaluated using (11). The evaluation 
of odd-order moments of [ z -  1[ is more complicated 
and we shall presently consider this aspect. The 
method of derivation differs for the following two 

* The results in § 3 are applicable not only to the normalized 
intensity variable z but also to any random variable defined 
originally in the interval (0, co), truncated to [a, b]. 

situations: (i) a < 1 < b and (ii) 1 < a < b. The former 
situation is the one generally met with in statistical 
tests for centrosymmetry. The latter situation arises 
when we compute the theoretical values of the odd- 
order moments of I z - l l  using data in which z >  1. 
For the sake of completeness we shall also consider 
this situation. 

3.3.1. Expression for (Iz-l12"+')t for the situation 
in which a < 1 < b. The (2n + l)th moment of [ z -  11 
for the truncated distribution is given by 

b 

(Iz-llZ'+!),=~lz-ll~"+!P,(z)dz. (13) 
a 

Clearly, we have 

[ z - l l = l - z = - ( z - 1 )  f o r z <  1 

= z - 1  for z-> 1. (14) 

Moreover, we can write 
b 1 

~ [Z-- l[2n+lPt(z ) d z =  ~ l z -  ll2"+!P,(z) dz 
a a 

h 

+J z-1]z"+'P,(z)d z. (15) 
I 

In view of (14) and (15), we can rewrite (13) as 

I 

( [ z -  112"+'), = -  I ( z - l l2"+!p , ( z )dz  
a 

b 

+I (z- l l2"+'P,(z)  dz. (16/ 
l 

Since 

b b 

I ( z -  1)2"+' Pt(z) dz = I ( z -  1 )2,,+, Pt(z) dz 
I a 

1 

- I  (z-1)2"+'P,(z) dz, 
a 

we can rewrite (16) as 

! 

(Iz-  112"+'), = <(z- 112°+'), - 2 1  (z-l)2"+'P,(z)dz. 

(171 
Expanding (z - 1) 2"÷1 of the second term on the right- 
hand side of (17) by using the binomial theorem and 
interchanging the order of summation and integra- 
tion, we obtain 

2 n + l  

( I z - l [ 2 " + ' ) , = ( ( z - 1 ) 2 " + ' ) , - 2  ~ ( -1 )  2"-k+' 
k = 0  

I 

(,8, 
a 
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3.3.2. Expression for ( [ z -  112"+'), for the situation 
1 < a < b. For this case, z > 1, so that [ z -  11 = z -  1. 
Hence, we can write 

(Iz-112"+'),=((z-1)2"+'),. (19) 

3.3.3. Expression for ( [ z -  M,12"+'),. We know that 
a < M~ < b. Following the procedure used in § 3.3.1 
we can easily show that 

([z-  M,[Z"+'), = ( ( z -  M,)2"+'), 

M I 

- 2  ~ (z-Mt)Z"+'P,(z)dz. (20) 
t~ 

Following the procedure used to obtain (18) from 
(17), we can obtain from (20) the expression 

2 n + l  

(I z -  M.12"+') ,=((z - M , ) 2 " + ' ) , - 2  ~ ( - m l )  2n-k+l 
k = 0  

M I 

(2n+ 1 ) f z k p t ( z ) d z "  (21) x k 
t2 

of z for the TAWD, 

b 

(z"), = AI ~" z" exp ( - z ) d z  = Al[ y(n + 1, x)]~ 
a 

= M,,  say. (29) 

Making use of (4b) to (4e) in (29), we can derive 
explicit expressions for the first four moments of z; 
these are given in rows 5, 6, 7 and 8 of Table 1. 

From (29) we obtain the nth moment of y, 

( y n ) , = ( Z n / 2 ) t =  a,[y(n/2+ 1, X)] b a- (30) 

Making use of (5c) to (5f)  in (30), we can obtain 
explicit expressions for the first four odd moments 
of y; these are given in rows 1, 2, 3 and 4 of Table 1. 

4.3. Expressions for ( ( z -  1)"), and ( ( z -  Mi)n)t, 
n = 2 , 3 , 4  

Making use of (29) in (11) and then carrying out 
some algebraic manipulations using the properties of 
the SCFV, we can show that 

k = O  

4. D e r i v a t i o n  o f  the  theore t i ca l  e x p r e s s i o n s  
for  the  T A W D  

4.1. Expressions for the p.d.f and c.f of z and y 

The p.d.f, and c.f. of z for the AWD are known to 
be (Srinivasan & Parthasarathy, 1976; SP76 hereafter) 

P(z )=exp( - z ) ,  0-< z<oo,  (22) 

N ( z ) = l - e x p ( - z ) ,  0<_ z<oO. (23) 

Using (22) and (23) in (7), we obtain the p.d.f, of  z 
for the TAWD as 

P,(z)=a,  exp(-z ) ,  z~Z,,  (24) 

where A~ is as defined in (3). Using (23) in (8), we 
obtain the c.f. of  z for the TAWD to be 

N t ( z ) = A , [ e x p ( - a ) - e x p ( - z ) ] ,  zcZt .  (25) 

Making use of (7) and (8) and the p.d.f, and c.f. of 
y for AWD available in SP76, we can obtain the p.d.f. 
and c.f. of  y for the TAWD, 

P,(y)=2A~yexp(-y2) ,  y~ Y,, (26) 

N,(y )=A~[exp( -a) -exp( -y2)] ,  y6 Y,. (27) 

4.2. Expressions for (z'), and (y2n+l), n = 1, 2, 3, 4 

It may be seen from (10) that, for the TAWD, 

M0 = 1, (28) 

which is the normalization condition for P,(z). 
Making use of (24) in (10), we obtain the nth moment 

Putting n = 2, 3 and 4 successively in (31), using (4a) 
to (4e) and the properties of SCFV, we can derive 
explicit expressions for the second, third and fourth 
moments of z -  1; these are given in rows 9, 10 and 
11 of Table 1. 

Making use of (29) in (11) and then carrying out 
some algebraic manipulations using the properties of 
the SCFV, we can show that 

a -  

k = O  

(32) 
Putting n = 2, 3 and 4 successively in (32), using (4a) 
to (4e) and the properties of the SCFV, we can derive 
explicit expressions for the second, third and fourth 
moments of z - M ~ ;  these are given in rows 15 and 
16 of Table 1. It may be noted that ((z - M1)2), is the 
variance of z. 

4.4. Expressions for (Jz 1 j2,,+,) , - t n = 0 , 1  

4.4.1. Results for the situation a < 1 < b. Using (24) 
in (18), we obtain 

2 n + l  

(z--l[2"+l)t=((Z--1)2"+l)t--2A! E (--1) 2n-k+l 
k = 0  

x [ y ( k +  1, x)]~. (33) 

Putting n = 0  and 1 successfully in (33), using (4a) 
to (4e) and the properties of the SCFV, we can derive 
expressions for the first and third moments of I z -  11 
and these are given in rows 12 and 13 of Table 1. 
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Table 1. Summary of statistical characteristics of the TA WD and TCWD 

Statistical 
No.  characterist ic  

I (y ) ,  
2 (y3), 

3 (vS), 
4 <yT), 

5 (z), = M t 
6 (z:'), 
7 (z3), 

8 (z4), 
9 ((z - 1 )2), 

10 ( ( z -  1)3), 

!1 ( ( z -  1)4), 

12 ( Iz-l l) ,  

13 <lz- 115 

14 ( ( z -  Mr)2), 

15 ((z - Mi )3), 

16 ( ( z -  MI )4), 

~7 <lz - M, I ) ,  

18 < lz -  M,13), 

Theoret ical  express ion  
for T A W D  

Al[ ( Trll212) erf (x 112 } - x  t12 exp ( - x ) ] ~  

At[(37rl1214) erf lx  I /2 ) - (  xt/212)(2x +3) exp ( - x ) ] ~  
Al[(15rrtt2/8) e r f ( x  t!2) - (Xt1214)(4X2+ 10X + 15) exp I -x)]{] 

At[(105rrW2/16)  erf  (x w2) - (xl /2/8) 
x (8x3+28x2+70x+ 105) exp ( - x ) ] 2  

1 - At[x  exp ( - x ) ] 2  
2 - A,[xIx + 2) exp ( - x ) ] ~  
6 -  A l [ x ( x  2 + 3x +6) exp ( -x) ]~ i  
2 4 -  Ai[x ( x  3 +4x 2+ 12x+24)  exp ( - x ) ] l l  

l -  A t [ x 2 e x p ( - x ) ] l l  
2 -  A l [ x ( x  2 + 3) exp ( - x ) ] 2  
9 -  A d x ( x  3+6x+8)  exp ( - x ) ] 2  

(i) A l [ 2 e x p ( - l ) - a e x p ( - a ) - b e x p ( - b l ]  if a < l < b  

(ii) A t [ x e x p ( - x ) ] ~  if l < a < b  
(i) 2+ A l [ i 2 e x p ( - l ) - ( a 3  + 3 a + 4 ) e x p ( - a )  

- ( b 3 + 3 b ) e x p ( - b ) ]  i f a < l < b  

(ii) 2 - A i [ x ( x 2 + 3 ) e x p ( - x ) ] ~  i f l < a < b  

( M { - 2 M ,  + 2 ) -  A , l x ( x - 2 M ,  +2) exp(-x) ]~ , ;  

( 6 - 6 M  t + 3 M ~ -  M ~ ) -  A,[ x{x 2 - 3 ( M  t - l ) x  
+ 3 ( M ~ -  2M, +2)}  exp ( - x ) ] ~  

2 4 - 2 4 M  I + 1 2 M ~ - 4 M ' ~ +  M{ 
- A t[ x{ x3 - 4( 1 - M t )x 2 + 6x(2 - 2M t + M{) 

2 3 + 4 ( 6 - 6 M  1 + 3 M i  - M I )  } exp ( - x ) ] ~  

2At [ ( I  - M 1 + x )  exp ( - x ) ] ~ '  

6 - 6 M r  + 3 M ~ -  M ~ -  a , [ { x  3 - 3 ( M r -  l Jx 2 
+ 3 ( M ~ - 2 M ,  +2)x} exp ( - x ) ] ~  
- 2 A ~ [ { M ~ - 3 M 2 t + 6 M ~ - 6 - 3 ( M ~ - 2 M t + 2 ) x  
+ 3 ( M  t - l ) x  2 -  x 3} exp ( - x ) ] ~ l  

Theoret ical  express ion  
for T C W D  

(2'/2/7rt/2)a21 (exp ( - x)]~,//~ 
2(2*/2/7ri /2)A2[(x + 1)exp  ( -  x)]'ff~ 

a /2  4(2 t`2/rrW2)A2[(x 2 + 2 x + 2 )  exp {-x)]~,,,2 
8(2'  12/rr,12)A2[(x 3 + 3x 2 + 6x + 6) exp ( -x)]~,/~ 

l -c2/~'/-')a2[ ~ t'-" exp ( -x ) ]~  
b / 2  3 - (2/7rW2)A2[xi"2(2x + 3) exp ( - -x ) ] . / 2  

h, 2 15 - ( 2 / r r  ''21A2[x*/2(4x2 + 10x+ 15) exp ( - x ) ] . , 2  
105 (2/7"rt/2)A,[xt/2(gx3 "~ 2 b/2 - . + , .8x  + 7 0 x + 1 0 5 ) e x p ( - x ) ] , , i  2 

, . , b . /2  2 - ( 2 / r r l " 2 ) A 2 [ x  ~i2(2x+ 1) exp t - x ; I . 1 2  
8 -  (2 / r r t "e )A2[x i /2 (4x  2 +4x +9) exp ( - . x ) ] ~  

6 0 - ( 2 /  Trt/2)A.[ xt/Z(8x3 +12x2 4 42x + 59) (-x)],,/~t'/" 
1/,~ (2/rrW2)A2{[ x t' 2 exp ( - x ) ] .  ,~ + [x t/2 exp ( - x)]l/,~} 

i f a < l < h  
(2/Trl"e)A2[x'": exp (-x)]~,//~ if 1 < a < b 
8 - (2/7r '"2)A2[x '' 2{4x2 + 4x + 9) exp ( - x ) ]  ~//~ 

-16A2[erf(xti2)]I//~ 
" + 3  t / 2  e +77" l12A2[(16x2+i6x . 6 i x  _xp(-x)]~, / ,~ 

i f a<  l < h  
8 - ( 2 / r r  t 21A2[xl :(4x2 +4x + 9 ) e x p ( - x ) ] l , , ~  

if I ,: a < b 
( M21- 2 M I + 3 ) - ( 2 / r r i / Z ) A 2 [ x  I/ 2 exp ( - x )  

1,/2 x ( 2 x + 3 - 2 M t ) ] , , / 2  
15 - 9 M  t + 3 M {  - M3t - ( 2 1 C " 2 ) A , I x  t `2  exp ( - x )  

,%, 2 
X {4X 2 + ( l 0  - 6 M i )x  + (3 M {  - 9 M I + 15)}]  . 1 2  

105-60M I + 18M 7 - 4 M ~  + M {  
- (21 rrt"2)A2[{Sx3 + (28 - 16M t )x 2 
+ ( 7 0 - 4 0 M  t + 12M2)x 

+ ( 1 0 5 - 6 0 M ,  + I S M ~ - 4 M ~ ) i x  t'2 exp (-x)]~/,~ 
A2{2( M I - 1) [er f (x t i2) ]~ '~  2 + (4/r r  l i2) 

x [x  l , :  exp ( - x ) ] ~  i2} 

( M ~ - 3 M T + 9 M I  - 15){2A2[erf(xtl2)] M'/2-1.12 } 

- (2 /Tr l"2)A2[{4x"  + ( I O - 6 M  I)x 

+ (3 M ~ _ 9 M l  +15)}xt/2 exp (_x )  ].i  2h/2 
+ (4/rrW2)A2[{4x 2 + ( 1 0 - 6 M  t )x 
+ (3M2t -  9M,  + 15)} Xt/2 exp ( - x ) l  ~i'; 2 

4.4.2. Results for the situation 1 < a < b. Putting 
n = 0  in (19) and using the expression for (z), from 
Table 1, we can obtain explicit expressions for 
( Iz -1 [ ) , .  Putting n = 1 in (19) and using the appro- 
priate expression (row 10) in Table 1 for ( ( z - 1 ) 3 ) ,  
we can obtain explicit expressions for ( I z - l l 3 ) , .  
These expressions are given in rows 12 and 13 of  
Table 1. 

4.5. Expressions for ([z-Mii2"+I), ,  n = 0 ,  1 

Using (24) in (21), we obtain 

(Iz- M,I~"+'), = ( ( z -  M,)2"+'), 

2"+1/2n + 1) k + l  

-2A'  k~=ol k , ( - M ' )  2"- 

x [ y ( k  + 1, x ) ]  ~ ' .  (34) 

Putting n = 0, 1 and 2 successively in (34), s implifying 
the resulting expressions using (4a)  to (4e) and using 

the properties of  the SCFV, we can obtain explicit 
expressions for the first and third moments  of lz-  M,I, 
these are given in rows 17 and 18 of  Table 1. 

5. Derivation of the theoretical values for the T C W D  

5.1. Expressions for the p.d.f, and c.f. of z and y 

Making use of  (7) and (8) and the expressions for 
the p.d.f, and c.f. of  z and y for the C W D  in SP76, 
we obtain 

P,(z) = A2(2rrz)-il2 exp  ( - z / 2 ) ,  z 6 Z, ,  

N,( z) = A2[erf (z'12/21/2) _ erf ( a *12/21/2)], 

P,(y)=A2(2/Tr)'12exp(-y2/2), y~ Y,, 

N,(y) = A2[erf (y/2 '/2) -er f  (a*/2/2'/2)], 

(35) 

Z E  L ,  

(36) 
(37) 

Y~Yt. 
(38) 
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5.2. Expressions for (z"}, and (y2,+1),, n = 1, 2, 3, 4 

It may be seen from (10) that  for the T C W D  

Mo = 1, (39) 

which is a consequence of  the normalizat ion of  P,(z). 
Making use of (35), we obtain the nth moment  of z, 

b 

m ,  = A2(2zr)-l/2 j" z,,-,/2 exp ( - z / 2 )  dz. (40) 
a 

Using the substi tution t = z /2 ,  we can rewrite (40) as 

I .,.'xlbl2 (41) M,  = 2"rr-l/2 A2[ 3,( n + ~ ,--s J a/2. 

Making use of (5c) to (5f )  in (41) and the propert ies 
of  the SCFV we can derive explicit expressions for 
the first four moments  of  z; these are given in rows 
5, 6, 7 and 8 of  Table 1. 

From (41) we obtain the nth moment  of y to be 

(y"), = (z"/2), 

. . ' l lb12 (42) = 2"/2"n'-1/2A2{ T[( n + 1 )/2,  .~, j j" a/2. 

Making use of (4a)  to (4d)  in (42) and the propert ies 
of  the SCFV we can derive the explicit expressions 
for the first four odd moments  of  y and these are 
given in rows 1, 2, 3 and 4 of  Table 1. 

5.3. Expressions for ( ( z -  1)"), and ( ( z -  M1)"),, 
n = 2 , 3 , 4  

Making use of (41) in (11), we obtain,  after some 
algebraic manipula t ions  using the propert ies of 
SCFV, 

( ( z - 1 ) " ) , = T r - ' / 2 A 2  ~ ( - 1 ) " - k 2  k 
k = 0  

x [ y ( k + ~ , x ) ] , / 2 .  

Putting n --2, 3 and 4 successively in (43) and using 
(4b) and (5b) to (5f) ,  we can derive explicit 
expressions for the second,  third and fourth mo- 
ments of  z -  1; these are given in rows 9, 10 and 11 of  
Table 1. 

Making use of  (41) in (11), we obtain, after carrying 
out some algebraic manipula t ions ,  

( ( z - M , ) " ) , = T r - ' / 2 a 2 ~ ( ~ ) ( - M , ) " - k 2  k 
k = 0  

b/2 (44) x [ y ( k + ~ , x ) ] a / : .  

Putting n = 2, 3 and 4 successively in (44) and using 
the propert ies of the SCFV we can derive explicit 
expressions for the second, third and fourth moments  
of z - M 1 ;  these are given in rows 14, 15 and 16 of 
Table 1. 

5.4. Expressions for ( I z -  l l 2 n + l ) t  , n = 0 ,  1 

5.4.1. Results for  the situation a < 1 < b. Making use 
of (35) in (18), we obtain 

( [ z -  112"+'), = ( ( z -  1)2"+'), 
2 n + l  

-2 (27 r ) - ' / 2A2  E ( - 1 )  2"-k+' 
k = O  

1 

a 

Substituting z /2  = x in (45), we obtain 

( [ z -  112"+'), = ( ( z -  1)2"+'), 
2 n + 1  

_zr- ' /2A2 ~ (-1)2"-k+12 k+' 
k = 0  (2.+,) 

x k [y (k+½,  x)]a/2. 

(45) 

(46) 

Putting n = 0 and 1 successively in (46) and using 
(5a)  to (5e) and the propert ies of the SCFV, we can 
derive explicit expressions for the first and third 
moments  of ([z-11);  these are given in rows 12 and 
13 of Table 1. 

5.4.2. Resuhs for the situation 1 < a'< b. Using (19) 
and the appropr ia te  expressions (z), for ((Z--1)3)t 
from row 1 of  Table 1, we can obtain explicit 
expressions for ( ]z-  ll), and ( I z -  113), ; these  are given 
in rows 12 and 13 of Table 1. 

5.5. Expressions for  (]z-M,12"+1), ,  n =0 ,  1 

Using (35) in (21) we obtain 

( Iz-  M, I2"+'), = ( ( z -  M1)2n+'),- 2'/27r-'/2A2 

X ~ ( - M 1 )  2"--k+' 2n 1 

k = O  

M I 

x I zk -1 /2exp( - -Z /2 )  dz. 

Substituting z /2  = x, we can rewrite (47) as 

(47) 

([z - M~[2"+l), = (( z - M~) 2"* ~), - zr-~/2A2 

x ~ (-M,)2"-k+'2 k÷~ 2n 1 
k = O  

M I / 2  x [ ~ ( k + ) ,  x)]o/2 . (48) 

Putting n = 0, 1 and 2 successively in (48) and then 
simplifying the resulting expressions using (5a)  to 
(5e) and the properties of  the SCFV, we can obtain 
explicit expressions for the first and third moments  
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Table 2. Details o f  the crystals used in the statistical tests and related results 

n,: total n u m b e r  of  possible  i ndependen t  th ree -d imens iona l  reflections in the interval S ~  n <_ (sin 0)/A <-Sm~x. 
n2: n u m b e r  of  reflections, out  o f  the n~ reflections, for which y < a ~/2. 
n3: n u m b e r  o f  reflections, out o f  the n~ reflections, for which y >  b ~/~. 

p = 100(n2+ n 3 ) / n  ~ = percen tage  of  reflections, out o f  the n~ reflections, that  are not used in the test. 

Molecu la r  Space  
No.* fo rmula  g roup  Smi n S m ~  a t/2 b t/2 n I n 2 n 3 p 

1 C2oH23NO P/  0.220 0.597 0.348 3.0 2210 563 12 26 
2 C20H32N203 P/  0.224 0.602 0.208 3.0 2878 459 11 16 
3 C22 H38 NaO PI  0.192 0.578 0.378 3.0 2789 791 15 29 
4 C13HI.sNO PI  0.234 0.573 0.289 3.0 1148 259 11 24 
5 C17H26N203 P 2 t / c  0.193 0.579 0.279 3.0 2148 489 8 23 
6 Ct~HIgNO C 2 / c  0.215 0.528 0.397 3.0 1347 420 6 32 
7 C24H3oN402 12/a  0.174 0.526 0.376 3.0 2171 666 14 31 
8 C27H3405 P212~2 ~ 0.210 0.550 0.527 2.5 1350 326 2 24 
9 C2sH2808 P2t2~2~ 0.228 0.546 0.546 2.9 1216 325 0 27 

* References: (1) Sekar, Parthasarathy & Radhakrishnan (1993); (2) Shanmugasundarraj, Ponnuswamy, Shanmugam & Kandasamy ( 1992); (3) 
Velmurugan (1991); 14) Sekar, Parthasarathy, Prabahar & Ramakrishnan (1993); (5) Ponnuswamy & Kandasamy (1990); (6) Sekar, Parthasarathy & 
Rajalingam (1990); (7) Velmurugan (1992); (8) Sekar, Parthasarathy, Epe & Mondon (1992); Sekar, Parthasarathy, Epe & Mondon (1992). 

of [z -Mt[ ;  these are given in rows 17 and 18 of 
Table 1. 

6. Test of the theoretical results 

The theoretical results given in Table 1 were tested 
using the observed data of nine actual crystal struc- 
tures. The observed hkl intensity data (corrected for 
Lorentz-polarization effects) on the same relative 
scale were used in calculating the experimental values 
of the various statistical parameters. The values of 
a ~/2 and b ~/2 are to be obtained for each crystal 
separately and the following procedure was used for 
this. The threshold value of y (i.e. y,) due to the 
unobserved reflections, which can be determined 
from an analysis of the intensity data of the crystal 
as a function of (sin 0)/A, was taken to be a ~/2. The 
value of b ~/2 for any given crystal may be obtained 
as follows: for crystals obeying the requirements of 
a WD only 0.3% of the reflections are expected to 
have y values greater than 3.0 for the centrosymmetric 
case and practically all the reflections are expected 
to have y values <3.0 for the noncentrosymmetric 
case (SP76). Hence, in an actual crystal containing 
similar atoms at general positions, if we find much 
more than 0.3% of reflections with y > 3.0, then it is 
most likely that some of the largest y values could 
have arisen due to overestimation. Hence we may set 
b 1/2 = 3.0 if the y data of the crystal contains y values 
greater than 3.0. On the other hand, if the y data of 
the crystal is such that the maximum observed value 
of y is less than 3.0, then b ~/2 may be taken to be the 
largest observed value ofy  rounded off to one decimal 
place. The details of the crystals used in the statistical 
tests and the related results such as the values of a i/2, 
b '/2 and the percentage of reflections excluded from 
the test are given in Table 2. For each crystal the 
experimental y values were computed from the ob- 
served intensity data by using (1), the value of (I) 

for each reflection of the crystal being computed from 
the least-squares cubic-spline function (with smooth- 
ing) that fits [(sin 0)/A, (I)] data.* The experimental 
and the corresponding theoretical values of the 
various statistical parameters for the nine crystals 
computed using the respective values of a ~/2 and b ~/2 
thus obtained are given in Tables 3 and 4. Table 3 
contains results for the statistical parameters that are 
listed in M U L T A N 8 0 ;  Table 4 contains the results 
for the parameters not included in M U L T A N 8 0 .  A 
study of Tables 3 and 4 shows that there is reasonably 
good agreement between the observed and the corre- 
sponding theoretical values of the various statistical 
parameters. From Table 3 it is also seen that the 
agreement between the experimental and the corre- 
sponding theoretical values of higher moments 
obtained from the present theoretical results is better 
than the agreement with the M U L T A N 8 0  outputs 
for the centrosymmetric structures. In the case of the 
noncentrosymmetric structures, the present theory 
and M U L T A N 8 0  are found to yield results that are 
equally good. It may, however, be noted that the 
results obtained from M U L T A N 8 0  using (y) and (y3) 
as test parameters are somewhat better than the results 
from the present theory. However, since the values 
of these parameters for centrosymmetric and non- 
centrosymmetric crystals are not very much different, 
they may not be very useful as statistical tests for 
centrosymmetry. The following incidental points may 
be noted: (i) Since (y2) = 1 for both CWD and AWD, 
it cannot be used as a parameter for testing for the 
centrosymmetry of the crystal, though it could be 

* The actual  compu ta t i ons  of  a t/2, b I/2 and y were done  using 
the For t ran  p r o g r a m  S T A T C W  (Sekar ,  1991) deve loped  by 
Par thasara thy  and  co-workers  for  conduc t ing  the var ious  statisti- 
cal tests for  cen t rosymmet ry .  The  details o f  S T A T C W  will be pub-  
lished separately.  S T A T C W  is an improved  version o f  S T A T C  
(Par thasara thy ,  P o n n u s w a m y ,  Eiango & Sekar,  1990). 
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Table 3. Theoretical and experimental values of (y") (n = 1, 2 , . . . ,  6), ( z -  1 n) (n = 1, 3) and ( ( z -  1) n) 
(n = 2, 3) as obtained from M U L T A N 8 0  and S T A T C W  for a few crystal structures 

A*:  theoretical value fo r  A W D  as obtained f r o m  M U L T A N 8 0 .  
E * :  experimental value as obtained f r o m  M U L T A N 8 0 .  
C * :  theoretical value for  C W D  as obtained f r o m  M U L T A N 8 0 .  
A: theoretical value for  T A W D  as obtained from the present theory. 
E:  experimental value as obtained f r o m  STATCW.  
C :  theoretical value fo r  T C W D  as obtained from the present theory. 
( ( z -  !)2): v a r i a n c e  o f  z. 

Space 
No.  g r o u p  (y )  (y2) (y3) (y4) (y5) (y6) 

! P1 A* 0.886 1.000 1.329 2.000 3.323 6.000 
E* 0.795 0.996 1.665 3.405 8.066 21.288 
C* 0.798 1.000 1.596 3.000 6.383 15.000 
A 0.970 1.120 1.494 2.243 3.706 6.628 
E 0.982 !.243 1.941 3.552 7.275 16.140 
C 1.023 1.323 2.062 3.683 7.27 i 15.453 

2 P i  A* 0.886 !.000 1.329 2.000 3.323 6.000 
E* 0.778 0.997 1.718 3.661 9.118 25.474 
C* 0.798 1.000 ! .596 3.000 6.383 15.000 
A 0.919 1.042 1.384 2.075 3.429 6.133 
E 0.885 1.080 1.664 3.005 6.040 13.081 
C 0.927 1.163 1.799 3.210 6.335 13.463 

3 P l  A* 0.886 1.000 1.329 2.000 3.323 6.000 
E* 0.779 0.996 1.713 3.761 10.340 35.045 
C* 0.798 1.000 1.596 3.000 6.383 15.000 
A 0.984 !.141 1.526 2.292 3.787 6.774 
E 0.996 1.272 1.985 3.581 7.157 15.398 
C 1.004 1.361 2.126 3.801 7.504 15.947 

4 P /  A* 0.886 1.000 1.329 2.000 3.323 6.000 
E* 0.771 0.990 i.787 4.121 11.336 35.323 
C* 0.798 1.000 1.596 3.000 6.383 15.000 
A 0.946 1.082 1.440 2.161 3.570 6.384 
E 0.912 1.115 1.727 3.161 6.471 14.302 
C 0.982 1.253 ! .944 3.471 6.851 14.559 

5 P2~/c A* 0.886 1.000 1.329 2.000 3.323 6.000 
E* 0.795 0.983 1.617 3.349 8.569 26.650 
C* 0.798 1.000 1.596 3.000 6.383 15.000 
A 0.943 1.077 1.432 2.149 3.550 6.349 
E 0.962 1.207 1.848 3.261 6.373 13.446 
C 0.976 1.241 1.926 3.438 6.785 14.419 

6 C 2 / c  A* 0.886 1.000 1.329 2.000 3.323 6.000 
E* 0.764 0.988 1.641 3.313 7.802 20.728 
C* 0.798 i.000 1.596 3.000 6.383 15.000 
A 0.993 1.156 1.547 2.325 3.843 6.875 
E 1.033 1.332 2.074 3.727 7.432 16.001 
C 1.058 1.386 2.168 3.878 7.657 16.273 

7 12/a A* 0.886 !.000 1.329 2.000 3.323 6.000 
E* 0.758 1.019 1.830 4.1 ! 1 10.987 33.578 
C* 0.798 1.000 1.596 3.000 6.383 15.000 

A 0.983 1.140 1.524 2.288 3.782 6.765 
E 1.002 i .286 2.024 3.706 7.556 16.643 
C 1.043 1.359 2.122 3.793 7.489 15.916 

8 P212121 A* 0.886 1.000 1.329 2.000 3.323 6.000 
E* 0.867 1.007 1.350 2.045 3.451 6.430 
C* 0.798 1.000 i.596 3.000 6.383 15.000 
A 1.057 1.263 1.692 2.504 4.022 6.908 
E 1.048 1.240 1.648 2.428 3.906 6.754 
C 1.126 1.476 2.208 3.666 6.583 12.530 

9 P212t2 t A* 0.886 1.000 1.329 2.000 3.323 6.000 
E* 0.851 0.995 1.358 2.119 3.709 7.169 
C* 0.798 1.000 1.596 3.000 6.383 15.000 
A 1.071 1.295 1.761 2.658 4.390 7.823 
E 1.070 1.301 1.796 2.793 4.837 9.197 
C 1.162 1.586 2.504 4.450 8.671 18.110 

( I z - l l )  ( ( z - l )  2) ( ( z - l )  3) ( Iz- l l  3) 
0.736 1.000 2.000 2.415 
0.984 2.414 13.059 13.741 
0.968 2.000 8.000 8.69 I 
0.708 !.003 2.259 2.512 
0.917 2.067 8.212 8.529 
0.938 2.037 7.373 7.659 
0.736 1.000 2.000 2.415 
1.011 2.666 16.484 17.197 
0.968 2.000 8.000 8.691 
0.724 0.991 2.032 2.382 
0.921 1.846 6.305 6.796 
0.936 1.884 6.322 6.774 
0.736 1.000 2.000 2.415 
1.044 2.770 25.748 26.455 
0.968 2.000 8.000 8.691 
0.705 1.009 2.323 2.553 
0.940 2.037 7.470 7.778 
0.940 2.078 7.629 7.883 
0.736 1.000 2.000 2.415 
1.032 3.142 24.929 25.654 
0.968 2.000 8.000 8.691 
0.715 0.996 2.149 2.446 
0.914 1.931 7.165 7.58 I 
0.935 1.966 6.904 7.258 
0.736 1.000 2.000 2.415 
0.954 2.382 18.553 19.228 
0.968 2.000 8.000 8.691 
0.716 0.995 2.133 2.437 
0.919 1.846 6.286 6.665 
0.935 1.955 6.830 7.196 
0.736 1.000 2.000 2.415 
0.981 2.338 12.752 13.477 
0.968 2.000 8.000 8.691 
0.703 1.013 2.367 2.582 
0.924 2.062 7.818 8.065 
0.942 2.106 7.798 8.032 
0.736 1.000 2.000 2.415 
1.050 3.073 23.301 24.062 
0.968 2.000 8.000 8.691 

0.705 1.008 2.319 2.550 
0.936 2.134 8.383 8.681 
0.940 2.075 7.613 7.869 
0.736 1.000 2.000 2.415 
0.738 1.031 2.317 2.768 
0.968 2.000 8.000 8.691 
0.679 0.978 2.186 2.305 
0.659 0.948 2.189 2.307 
0.878 1.714 4.960 5.079 
0.736 1.000 2.000 2.415 
0.758 1.130 2.796 3.278 
0.968 2.000 8.000 8.691 
0.691 1.068 2.734 2.841 
0.698 1.191 3.722 3.829 
0.960 2.279 8.516 8.621 

used to check the quality of the experimental data. 
(ii) In the case of any given crystal, if the experimental 
values of  higher-order moments are highly enhanced 
compared with the corresponding theoretical values 
for the TWD, in spite of using the procedure suggested 
in this paper, then it would be reasonable to assume 

that these enhancements could have arisen from the 
violation of the basic requirements of the WD in such 
a crystal. The exact theoretical distributions required 
for such a crystal should then be obtained using the 
more rigorous treatment of Shmueli and co-workers 
(Shmueli,  Weiss & Kiefer, 1985; Weiss, Shmueli,  
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T a b l e  4. Theoretical and  experimental  values o f ( y 7 ) t ,  (yS), ,  ( (z  - 1 )4),, ( (z  - M I ) " ) ,  (n  = 2, 3 and 4), ([z - MI "), 
( n = 1 and  3) as obtained f r o m  S T A  T C W  for  a f e w  crystal structures 

A: theoretical values for TAWD as obtained from the present theory. 
E: experimental values as obtained from STATCW. 
C" theoretical values for TCWD as obtained from the present theory. 
((z-  MI)2): variance of z for truncated distribution. 

Space 
No. g roup  (y7)t 

1 PI A 12.66 
E 37.91 
(" 34.72 

2 P1 A ll.71 
E 29.91 
C 30.25 

3 P1 A 12.94 
E 34.99 
(" 35.83 

4 P1 A 12.20 
E 33.35 
C 32.71 

5 P21/c A 12.13 
E 30.07 
C 32.40 

6 C2/c A 13.13 
E 36.48 
C 36.56 

7 12/a A 12.92 
E 38.80 
C 35.76 

8 P212121 A 12.53 
E 12.39 
C 24.90 

9 P2~2t2 t A 14.86 
E 18.90 
C 39.88 

(yS)t ( ( z - l ) 4 ) t  ( ( z -Mi)2) ,  ( ( z -Mi)~) ,  ( ( z -M,)a) ,  ( I z - M l J ) ,  

25.59 9.06 0.989 1.902 8.06 0.734 
92.84 45.62 2.008 6.736 38.37 0.987 
81.45 37.44 i .932 5.465 29.15 1.012 
23.68 8.43 0.990 1.907 8.10 0.734 
71.23 33.62 1.840 5.864 31.68 0.949 
70.95 32.71 1.857 5.410 28.89 0.983 
26.16 9.25 0.989 i.901 8.05 0.734 
82.95 38.75 1.964 5.850 31.52 1.018 
84.05 38.62 1.947 5.471 29.17 i .018 
24.65 8.75 0.989 i.905 8.08 0.734 
80.92 39.21 1.9 ! 8 6.503 36.08 0.956 
76.73 35.31 1.902 5.447 29.08 1.000 
24.52 8.71 0.989 1.905 8.09 0.734 
70.37 32.32 1.803 5.156 27.58 0.972 
76.00 34.98 i .897 5.443 29.06 0.998 
26.55 9.38 0.989 ! .900 8.04 0.734 
86.88 40.91 1.952 5.835 31.85 1.006 
85.77 39.40 ! .956 5.474 29.17 1.022 
26.12 9.23 0.989 1.901 8.05 0.734 
94.42 45.94 2.053 6.601 37.38 1.0 ! 7 
83.89 38.55 1.946 5.471 29.17 1.018 
23.74 7.08 0.909 1.451 5.17 0.7 i 8 
23.85 7.45 0.890 1.534 5.66 0.701 
51. ! 7 18.15 1.488 2.728 10.88 0.939 
29.80 10.28 0.980 1.840 7.58 0.733 
41.37 17.13 1.100 2.701 13.27 0.740 
91.47 40.39 1.935 4.914 24.77 1.034 

(Iz-  M.I~), 
2.315 
7.515 
6.376 
2.320 
6.521 
6.207 
2.314 
6.687 
6.406 
2.318 
7.145 
6.310 
2.318 
5.950 
6.299 
2.313 
6.690 
6.424 
2.314 
7.451 
6.404 
i .843 
1.891 
3.533 
2.251 
3.123 
5.942 

Kiefer & Wilson, 1985) and this aspect is beyond the 
scope of  the present paper. 
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